Logo Qualitäts- und UnterstützungsAgentur

Startseite Bildungsportal NRW

Orientierungsbereich (Sprungmarken)

Q-Phase Grundkurs Funktionen und Analysis (A)

Hinweis: Thema, Inhaltsfelder, inhaltliche Schwerpunkte und Kompetenzen hat die Fachkonferenz des Riese-Gymnasiums/der Riese-Gesamtschule verbindlich vereinbart. In allen anderen Bereichen sind Abweichungen von den vorgeschlagenen Vorgehensweisen bei der Konkretisierung der Unterrichtsvorhaben möglich. Darüber hinaus enthält dieser schulinterne Lehrplan in den Kapiteln 2.2 bis 2.4 übergreifende sowie z. T. auch jahrgangsbezogene Absprachen zur fachmethodischen und fachdidaktischen Arbeit, zur Leistungsbewertung und zur Leistungsrückmeldung. Je nach internem Steuerungsbedarf können solche Absprachen auch vorhabenbezogen vorgenommen werden

 

Thema: Von der Randfunktion zur Integralfunktion (Q-GK-A4)

Zu entwickelnde Kompetenzen

Vorhabenbezogene Absprachen und Empfehlungen

Inhaltsbezogene Kompetenzen:

Die Schülerinnen und Schüler

  • erläutern und vollziehen an geeigneten Beispielen den Übergang von der Produktsumme zum Integral auf der Grundlage eines propädeutischen Grenzwertbegriffs
  • erläutern geometrisch-anschaulich den Zusammenhang zwischen Änderungsrate und Integralfunktion (Hauptsatz der Differential- und Integralrechnung)
  • nutzen die Intervalladditivität und Linearität von Integralen
  • bestimmen Stammfunktionen ganzrationaler Funktionen
  • bestimmen Integrale mithilfe von gegebenen Stammfunktionen und numerisch, auch unter Verwendung digitaler Werkzeuge
  • ermitteln den Gesamtbestand oder Gesamteffekt einer Größe aus der Änderungsrat
  • bestimmen Flächeninhalte mit Hilfe von bestimmten Integralen

Prozessbezogene Kompetenzen:

Argumentieren

Die Schülerinnen und Schüler

  • stellen Vermutungen auf (Vermuten)
  • unterstützen Vermutungen beispielgebunden (Vermuten)
  • präzisieren Vermutungen mithilfe von Fachbegriffen und unter Berücksichtigung der logischen Struktur (Vermuten)
  • stellen Zusammenhänge zwischen Begriffen her (Begründen)

Werkzeuge nutzen

Die Schülerinnen und Schüler

  • nutzen […] digitale Werkzeuge [Erg. Fachkonferenz: Tabellenkalkulation und Funktionenplotter] zum Erkunden und Recherchieren, Berechnen und Darstellen
  • Verwenden verschiedene digitale Werkzeuge zum
    • Messen von Flächeninhalten zwischen Funktionsgraph und Abszisse
    • Ermitteln des Wertes eines bestimmten Integrals

Schülerinnen und Schüler sollen hier (wieder-)entdecken, dass die Bestandsfunktion eine Stammfunktion der Änderungsrate ist. Dazu kann das im vorhergehenden Unterrichtsvorhaben (vgl. Thema Q-GK-A3) entwickelte numerische Näherungsverfahren auf den Fall angewendet werden, dass für die Änderungsrate ein Funktionsterm gegeben ist.

Die Graphen der Änderungsrate und der Bestandsfunktion können die Schülerinnen und Schüler mit Hilfe einer Tabellenkalkulation und eines Funktionenplotters gewinnen, vergleichen und Beziehungen zwischen diesen herstellen.

Fragen, wie die Genauigkeit der Näherung erhöht werden kann, geben Anlass zu anschaulichen Grenzwertüberlegungen.

Da der Rekonstruktionsprozess auch bei einer abstrakt gegebenen Randfunktion möglich ist, wird für Bestandsfunktionen der Fachbegriff Integralfunktion eingeführt und der Zusammenhang zwischen Rand- und Integralfunktion im Hauptsatz formuliert (ggf. auch im Lehrervortrag).

Die Regeln zur Bildung von Stammfunktionen werden von den Schülerinnen und Schülern durch Rückwärtsanwenden der bekannten Ableitungsregeln selbstständig erarbeitet. (z. B. durch ein sog. Funktionendomino

In den Anwendungen steht mit dem Hauptsatz neben dem numerischen Verfahren ein alternativer Lösungsweg zur Berechnung von Gesamtbeständen zur Verfügung.

Davon abgegrenzt wird die Berechnung von Flächeninhalten, bei der auch Intervalladditivität und Linearität (bei der Berechnung von Flächen zwischen Kurven) thematisiert werden. Bei der Berechnung der Flächeninhalte zwischen Graphen werden die Schnittstellen in der Regel numerisch mit dem GTR bestimmt.

Komplexere Übungsaufgaben sollten am Ende des Unterrichtsvorhabens bearbeitet werden, um Vernetzungen mit den Kompetenzen der bisherigen Unterrichtsvorhaben (Funktionsuntersuchungen, Aufstellen von Funktionen aus Bedingungen) herzustellen.

Zum Seitenanfang

© 2024 Qualitäts- und UnterstützungsAgentur - Landesinstitut für Schule