Logo Qualitäts- und UnterstützungsAgentur

Startseite Bildungsportal NRW

Orientierungsbereich (Sprungmarken)

Q-Phase Grundkurs Analytische Geometrie und Lineare Algebra (G)

Hinweis: Thema, Inhaltsfelder, inhaltliche Schwerpunkte und Kompetenzen hat die Fachkonferenz des Riese-Gymnasiums/der Riese-Gesamtschule verbindlich vereinbart. In allen anderen Bereichen sind Abweichungen von den vorgeschlagenen Vorgehensweisen bei der Konkretisierung der Unterrichtsvorhaben möglich. Darüber hinaus enthält dieser schulinterne Lehrplan in den Kapiteln 2.2 bis 2.4 übergreifende sowie z. T. auch jahrgangsbezogene Absprachen zur fachmethodischen und fachdidaktischen Arbeit, zur Leistungsbewertung und zur Leistungsrückmeldung. Je nach internem Steuerungsbedarf können solche Absprachen auch vorhabenbezogen vorgenommen werden

 

Thema: Lineare Algebra als Schlüssel zur Lösung von geometrischen Problemen (Q-GK-G2)

Zu entwickelnde Kompetenzen

Vorhabenbezogene Absprachen und Empfehlungen

Inhaltsbezogene Kompetenzen:

Die Schülerinnen und Schüler

  • stellen Ebenen in Parameterform dar
  • untersuchen Lagebeziehungen […] zwischen Geraden und Ebenen
  • berechnen Schnittpunkte von Geraden sowie Durchstoßpunkte von Geraden mit Ebenen und deuten sie im Sachkontext
  • stellen lineare Gleichungssysteme in Matrix-Vektor-Schreibweise dar
  • beschreiben den Gauß-Algorithmus als Lösungsverfahren für lineare Gleichungssysteme
  • interpretieren die Lösungsmenge von linearen Gleichungssystemen

Prozessbezogene Kompetenzen:

Problemlösen

Die Schülerinnen und Schüler

  • wählen heuristische Hilfsmittel (z. B. Skizze, informative Figur, Tabelle, experimentelle Verfahren) aus, um die Situation zu erfassen (Erkunden)
  • entwickeln Ideen für mögliche Lösungswege (Lösen)
  • wählen Werkzeuge aus, die den Lösungsweg unterstützen (Lösen)
  • nutzen heuristische Strategien und Prinzipien (z. B. [...] Darstellungswechsel, Zerlegen und Ergänzen, Symmetrien verwenden, Invarianten finden, Zurückführen auf Bekanntes, Zerlegen in Teilprobleme, Fallunterscheidungen, Vorwärts- und Rückwärtsarbeiten, […]) (Lösen)
  • führen einen Lösungsplan zielgerichtet aus (Lösen)
  • vergleichen verschiedene Lösungswege bezüglich Unterschieden und Gemeinsamkeiten (Reflektieren)
  • beurteilen und optimieren Lösungswege mit Blick auf Richtigkeit und Effizienz (Reflektieren)
  • analysieren und reflektieren Ursachen von Fehlern (Reflektieren)

Werkzeuge nutzen

Die Schülerinnen und Schüler

  • verwenden verschiedene digitale Werkzeuge zum
    • Lösen von Gleichungen und Gleichungssystemen

Als Einstiegskontext für die Parametrisierung einer Ebene kann eine Dachkonstruktion mit Sparren und Querlatten dienen. Diese bildet ein schiefwinkliges Koordinatensystem in der Ebene. Damit wird die Idee der Koordinatisierung aus dem Thema E-G2 wieder aufgegriffen.

Wenn genügend Zeit zur Verfügung steht, können durch Einschränkung des Definitionsbereichs Parallelogramme und Dreiecke beschrieben und auch anspruchsvollere Modellierungsaufgaben gestellt werden, die über die Kompetenzerwartungen des KLP hinausgehen.

In diesem Unterrichtsvorhaben werden Problemlösekompetenzen erworben, indem sich heuristische Strategien bewusst gemacht werden (eine planerische Skizze anfertigen, die gegebenen geometrischen Objekte abstrakt beschreiben, geometrische Hilfsobjekte einführen, bekannte Verfahren zielgerichtet einsetzen und in komplexeren Abläufen kombinieren und unterschiedliche Lösungswege kriteriengestützt vergleichen).

Punktproben sowie die Berechnung von Spurgeraden in den Grundebenen und von Schnittpunkten mit den Koordinatenachsen führen zunächst noch zu einfachen Gleichungssystemen. Die Achsenabschnitte erlauben eine Darstellung in einem räumlichen Koordinatensystem.

Die Untersuchung von Schattenwürfen eines Mastes auf eine Dachfläche z. B. motiviert eine Fortführung der systematischen Auseinandersetzung (Q-GK-A2) mit linearen Gleichungssystemen, mit der Matrix-Vektor-Schreibweise und mit dem Gauß-Verfahren.

Die Lösungsmengen werden mit dem GTR bestimmt, zentrale Werkzeugkompetenz in diesem Unterrichtsvorhaben ist die Interpretation des angezeigten Lösungsvektors bzw. der reduzierten Matrix. Die Vernetzung der geometrischen Vorstellung (Lagebeziehung) und der algebraischen Formalisierung sollte stets deutlich werden.

Zum Seitenanfang

© 2024 Qualitäts- und UnterstützungsAgentur - Landesinstitut für Schule